RHIC Machine Performance in Runs 6 and 7

- Summary of Run 6
- Expectations and goals for Run 7
- Run-7 in a nutshell
- Compare Run 6 and Run 7
- Conclusions

Polarized protons performance at 100 GeV (last three runs)

Parameter	Unit	200 4	2005	2006	
No. of bunches		56	106	111	
bunch intensity	10 ¹¹	0.7	0.9	1.35	
β*	m	1	1	1	
emittance	mm mrad	18	28	<u>18</u>	
peak luminosity	10 ³⁰ cm ⁻² s ⁻¹	6	10	<u>35</u>	
average luminosity	10 ³⁰ cm ⁻² s ⁻¹	4	6	<u>20</u>	
collision points		4	3	2	
time in store	%	41	56	<u>46</u>	
average polarization, store	%	46	47	<u>65%</u>	

Luminosity gain in run-6:

Integrated luminosity: 100 GeV run

Polarization during 100 GeV run

Expectations and Goals for Run-7

- Do better than Run-4;)
- Increase number of bunches to 111 yes
- □ Reach 60% time at store on average No!
- Reach avg. luminosity/store yes
 - > 8 10²⁶ cm-2 s-1 routinely
- Reach peak luminosity/store
 - \sim > 30 10²⁶ cm-1 s-1
- Increase bunch intensity

yes

yes

no

Achieved beam parameters for Run7

- Avg. Luminosity gain: x2-3
- Int. Luminosity gain: x2
- Peak Luminosity gain: x2-2.5
- Reached maximum
 - Number of bunches
 - Transition crossing/bunch intensity
 - Luminosity lifetime? -> cooling
 - Transv. emittance preservation?
- We reached the enhanced design goal!

run	year	β*	no. of	ions/bunch	$\epsilon_{x,y}^{norm}$.	\mathcal{L}_{peak}	$\mathcal{L}_{avg.}$	\mathcal{L}_{week}
		(m)	bunches	10^{9}	$(\pi \text{ mm mrad})$	$(10^{26} c)$	$m^{-2}s^{-1}$)	(μb^{-1})
design		2	55	1.0	15-40	9	2	50
enhanced design		1	111	1.0	15-40	30	8	300
Run-2	FY2001/02	1	55	0.5	15-40	3.7	1.5	24
Run-4	FY2004	1	45	1.1	15-40	15	5	160
Run-7	FY2007	0.8 (1.1?)	111	1.1	15-40	30	10-14	200-400

Scrubbing at the beginning of the run

10:45

bluDCCTtotal

11:15

11:30

yelDCCTtotal

11:45

Time (Start Fill = 8401)

12:00

→ bluWCMbunched

12:15

- Pressure bump moves from IR4 to IR12
- Pressure bump reduces after 4th high intensity injection
- Spend a total of 2 hours

Example of a good week (May 14-May 20)

Example of a bad week May 28 – Jun 3

Angelika Drees

- beam losses along the bunch train
- Rebucketing issues, debunching beam
- Higher bunch intensity?

Losses along the bunch train

103 Std.

103 f.g.

- 103 std. ramp (1.15) shows beam blow up in all late bunches (ramp failed)
- Next 103 fg ramp with same bunch intensity (1.17) worked
- Gap pattern clearly visible in 8837
- 103 fg set to be default

Stochastic Cooling (Yellow only)

- Stochastic cooling was commissioned and made operational for the 2nd half of the run
- Yellow beam decay reduced to "burn-off" rate
- More beam in the center bucket
- Increased luminosity lifetime
- Net-effect on integrated luminosity 10%-20% (analysis not yet finished)

Bunch Intensity at Injection

Ramp Efficiency

Time between newfill and accramp (turn-around indicator)

Run7 average luminosity highest with 103 bunches/ring

Low Energy study: Challenges and Successes

Challenges

- h=366 invalid events stopped PHENIX, nearly stopped STAR, interfered with V125 abort trigger module
- 3-bucket cogging in h=366 prevented simultaneous expt cogging
- Unipolar defocusing sextupoles limited chromaticity to near zero
- Minor online model issues prevented full range of tune adjustment
- All challenges are addressible either offline or during test run setup

Successes

- LLRF worked like a charm, RF capture quick with phase detectors
- Instrumentation worked remarkably well with h=366 timing
- Orbit correction, coupling corrections worked well
- Longitudinal beam distribution shorter than expected (scraping?)
- Vernier scans still feasible even with 2-20 minute beam lifetimes
- Have data for luminosity measurement deliverable

Setup within 24 hours!

Low Energy: STAR Vernier Scans

Angelika Drees

Week-by-week integrated luminosity Run 7

- Only 2 weeks above goal
 - Contributing factors:
 - Temperature (late start of run), weather
 - Full field (Au @ 100 GeV)
 - Unprecedented intensity (beam loading)
 - Pushing the envelope (transition crossing, pressure rise, number of bunches etc.)
 - Aging?

Time at store

- Data included until
 Jun 9th 2007
- □ Goal: 60%
- Failed to reach goal by 15%
- Break up into weekby-week on next slide
- Beam induced quenches not correlated with uptime

Beam induced quenches:

Integrated Au-Au Luminosity Run-7

- Integrated luminosity well between min. and max. expectation
- Corrected for acc. collisions (due to high coll. rate)
- "bi-weekly"
 performance oscillation
 coinciding with
 maintenance days
- Slope change after experimental magnets polarity flip
- Integrated luminosity still in upper half even with only 40% time at store!

Conclusions

- Analysis of data not yet finished (Run still going on!)
- We met our goals (almost)
 - 111 bunches
 - Exceeded 8 10²⁶ cm-2 s-1 avg. luminosity/store
 - 30 10²⁶ cm-1 s-1 peak luminosity
 - Some weeks exceeded 300 ub-1 integrated luminosity
- Bunch intensity limit (~1.2 10°)
- Up-time or reliability needs significant changes:
 - Plans for next year
 - Long-term plans
- Stochastic Cooling concept worked very well
 - Need to work on mechanical design

